Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

Jesús Valdés-Martínez, ${ }^{\text {a }}$ * \dagger
James H. Alstrum-Acevedo, ${ }^{\text {b }}$
Rubén A. Toscano, ${ }^{\text {a }}$ Georgina
Espinosa-Pérez, ${ }^{\text {a }}$ Brian A.

Helfrich ${ }^{\text {c }}$ and Douglas X. West ${ }^{\text {b }}$
${ }^{\text {a }}$ Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México DF, Mexico, ${ }^{\text {b }}$ Department of Chemistry, Illinois State University, Normal, IL 61790-4160, USA, and ${ }^{\text {c }}$ Kansas State University, Manhattan, KS 665033701, USA

+ On sabbatical leave. Current Adress: Department of Chemistry, Kansas State University, Manhattan, KS 66503-3701, USA

Correspondence e-mail: jvaldes@ksu.edu

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.008 \AA$
R factor $=0.044$
$w R$ factor $=0.142$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Bis(2-pyridiniomethyleneaminoguanidinium) transtetraaquadichloronickel(II) dichloride tetrahydrate

In the title compound, $\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{4}\right)_{2}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$, the Ni complex occupies a special position on the twofold axis; both cation and anions, as well as the water molecules, are in general positions. The multiple crystallographically independent hydrogen bonds form an infinite three-dimensional network in the crystal.

Comment

In an attempt to obtain the tetrachloronickelate(II) analogues of tetrachlorocuprate(II) aminoguanidinium compounds (Alstrum-Acevedo et al., 2001), the title compound, (I), was obtained (Fig. 1).

Both pyridyl and guanyl N atoms in (I) are protonated, thus giving rise to a dicationic species. Due to the protonation of the guanyl nitrogen, two NH_{2} groups are attached to the C atom of the guanidine moiety. The $\mathrm{C}-\mathrm{N}$ bond distances involving the two NH_{2} groups, viz. $\mathrm{C} 8-\mathrm{N} 4$ and $\mathrm{C} 8-\mathrm{N} 5$, as well as the $\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 5$ angle (Table 1), indicate considerable π-character in the bonding. Delocalization and the intramolecular $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2$ and $\mathrm{N} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 2$ hydrogen bonds (Table 2) are responsible for the planarity of the molecule.

Experimental

1.0 mmol of aminoguanidine bicarbonate was neutralized by the dropwise addition of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ until the evolution of CO_{2} ceased and then added to a solution of 1.0 mmol of 2-formylpyridine in ethanol, followed by $2-3$ drops of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to catalyze the reaction. The mixture was refluxed for 5 h and slowly evaporated at ca 308 K to give a yellow solid, m.p. 463-465 K. Compound (I) was prepared by dissolving 1 mmol of the aminoguanidine in approximately 50 ml of a 3:1 $\mathrm{EtOH}-\mathrm{HCl}(12 N)$ mixture by volume, adding an equimolar amount of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$, and subsequent heating of the reaction mixture under reflux for 1 h . The solution was then filtered and the filtrate left until crystals formed.

Received 5 February 2001
Accepted 26 February 2001
Online 9 March 2001
$\mathrm{Cl}_{2} .4 \mathrm{H}_{2} \mathrm{O}$

Figure 1

A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

$\left(\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{~N}_{4}\right)_{2}\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl}_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=745.95$
Monoclinic, $C 2 / c$
$a=24.698$ (4) \AA
$b=7.106$ (1) \AA
$c=18.538$ (2) \AA
$\beta=99.59$ (1) ${ }^{\circ}$
$V=3208.0(8) \AA^{3}$
$Z=4$
$D_{x}=1.544 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 33 reflections
$\theta=2.5-12.5^{\circ}$
$\mu=1.16 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, yellow
$0.30 \times 0.16 \times 0.10 \mathrm{~mm}$
Data collection
Siemens $P 4 / \mathrm{PC}$ diffractometer
$R_{\text {int }}=0.046$
$\theta / 2 \theta$ scans
$\theta_{\text {max }}=27.5^{\circ}$
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.325, T_{\text {max }}=0.367$
4547 measured reflections
3656 independent reflections
2222 reflections with $I>2 \sigma(I)$
$h=-1 \rightarrow 32$
$k=-1 \rightarrow 9$
$l=-24 \rightarrow 23$
3 standard reflections every 97 reflections intensity decay: 3%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.142$
$S=1.02$
3656 reflections
219 parameters

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0678 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.007$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.46 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

Ni1-O1	$2.075(3)$	$\mathrm{C} 7-\mathrm{N} 2$	$1.286(6)$
$\mathrm{Ni} 1-\mathrm{O} 2$	$2.092(4)$	$\mathrm{C} 8-\mathrm{N} 3$	$1.368(5)$
$\mathrm{Ni} 1-\mathrm{Cl} 1$	$2.3923(9)$	$\mathrm{C} 8-\mathrm{N} 4$	$1.324(6)$
$\mathrm{N} 1-\mathrm{C} 6$	$1.334(6)$	$\mathrm{C} 8-\mathrm{N} 5$	$1.304(6)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.356(6)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.360(5)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{O} 2$	$178.04(13)$	$\mathrm{N} 5-\mathrm{C} 8-\mathrm{N} 4$	$123.2(4)$
$\mathrm{O} 1-\mathrm{Ni} 1-\mathrm{Cl} 1$	$88.83(9)$	$\mathrm{N} 5-\mathrm{C} 8-\mathrm{N} 3$	$119.9(4)$
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{Cl} 1$	$92.79(9)$	$\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 3$	$116.9(4)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 7$	$119.2(4)$	$\mathrm{C} 7-\mathrm{N} 2-\mathrm{N} 3$	$117.7(4)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 2$	$118.1(4)$	$\mathrm{N} 2-\mathrm{N} 3-\mathrm{C} 8$	$116.9(3)$

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 A \cdots \mathrm{O}^{\mathrm{i}}$	0.84	1.99	$2.775(5)$	156
$\mathrm{O} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2$	0.84	2.30	$3.132(4)$	169
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O} 4^{\text {ii }}$	0.85	1.97	$2.795(6)$	163
$\mathrm{O} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2^{\text {iii }}$	0.84	2.30	$3.131(4)$	169
$\mathrm{O} 3-\mathrm{H} 3 A \cdots \mathrm{Cl} 1$	0.82	2.35	$3.163(4)$	172
$\mathrm{O} 3-\mathrm{H} 3 B \cdots \mathrm{Cl} 3^{\mathrm{ii}}$	0.85	2.42	$3.180(6)$	147
$\mathrm{O} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 3$	0.86	2.26	$3.096(4)$	167
$\mathrm{O} 4-\mathrm{H} 4 B \cdots \mathrm{Cl} 2^{\text {iv }}$	0.83	2.31	$3.107(4)$	161
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{~N} 2$	0.85	2.42	$2.717(5)$	101
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 3$	0.85	2.29	$3.096(4)$	160
$\mathrm{~N} 3-\mathrm{H} 3 C \cdots \mathrm{Cl} 1^{\text {v }}$	0.82	2.48	$3.231(4)$	153
$\mathrm{~N} 4-\mathrm{H} 4 C \cdots \mathrm{O} 2^{\text {vi }}$	0.84	2.43	$3.207(6)$	155
$\mathrm{~N} 4-\mathrm{H} 4 C \cdots \mathrm{O} 1^{\text {vii }}$	0.84	2.49	$3.119(5)$	132
$\mathrm{~N} 4-\mathrm{H} 4 D \cdots \mathrm{Cl} 2^{\mathrm{v}}$	0.84	2.35	$3.187(4)$	168
$\mathrm{~N} 5-\mathrm{H} 5 A \cdots \mathrm{~N} 2$	0.86	2.37	$2.634(5)$	98
$\mathrm{~N} 5-\mathrm{H} 5 A \cdots \mathrm{Cl} 3$	0.86	2.39	$3.225(4)$	162
$\mathrm{~N} 5-\mathrm{H} 5 B \cdots \mathrm{O} 3^{\text {vi }}$	0.84	1.98	$2.778(6)$	157

Symmetry codes: (i) $-x,-y, 1-z$; (ii) $x, 1-y, \frac{1}{2}+z$; (iii) $-x, 1+y, \frac{3}{2}-z$; (iv) $x,-y, z-\frac{1}{2}$; (v) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (vi) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (vii) $\frac{1}{2}+x, \frac{1}{2}-y, z-\frac{1}{2}$.

H -atom positions were located in difference Fourier maps and a riding model with fixed displacement parameters $\left[U_{\mathrm{ij}}=1.2 U_{\mathrm{ij}}(\mathrm{eq})\right.$ of the atom to which they are bonded] was used for subsequent refinements. H atoms attached to N and O atoms were refined with fixed bond lengths $\mathrm{r}(\mathrm{D}-\mathrm{H})=0.85 \AA$.

Data collection: P4 Software (Siemens, 1995); cell refinement: P4 Software; data reduction: P4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997).

The authors thank the Donors of the Petroleum Research Fund, administered by the American Chemical Society, the National Science Foundation and the UNAM for partial support of this research.

References

Alstrum-Acevedo, J. H., Valdés-Martínez, J., Toscano, R. A., HernandezOrtega, S., Espinosa-Pérez, G., Helfrich, B. A. \& West, D. X. (2001). Polyhedron. Submitted.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 350359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1995). P4 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

