Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Jesús Valdés-Martínez,^a*† James H. Alstrum-Acevedo,^b Rubén A. Toscano,^a Georgina Espinosa-Pérez,^a Brian A. Helfrich^c and Douglas X. West^b

^aInstituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México DF, Mexico, ^bDepartment of Chemistry, Illinois State University, Normal, IL 61790-4160, USA, and ^cKansas State University, Manhattan, KS 66503-3701, USA

+ On sabbatical leave. Current Adress: Department of Chemistry, Kansas State University, Manhattan, KS 66503-3701, USA

Correspondence e-mail: jvaldes@ksu.edu

Key indicators

Single-crystal X-ray study T = 293 KMean $\sigma(C-C) = 0.008 \text{ Å}$ R factor = 0.044 wR factor = 0.142 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2001 International Union of Crystallography Printed in Great Britain – all rights reserved Bis(2-pyridiniomethyleneaminoguanidinium) *trans*-tetraaquadichloronickel(II) dichloride tetrahydrate

In the title compound, $(C_7H_{11}N_4)_2[Ni(H_2O)_4Cl_2]Cl_2\cdot 4H_2O$, the Ni complex occupies a special position on the twofold axis; both cation and anions, as well as the water molecules, are in general positions. The multiple crystallographically independent hydrogen bonds form an infinite three-dimensional network in the crystal.

Received 5 February 2001 Accepted 26 February 2001 Online 9 March 2001

Comment

In an attempt to obtain the tetrachloronickelate(II) analogues of tetrachlorocuprate(II) aminoguanidinium compounds (Alstrum-Acevedo *et al.*, 2001), the title compound, (I), was obtained (Fig. 1).

Both pyridyl and guanyl N atoms in (I) are protonated, thus giving rise to a dicationic species. Due to the protonation of the guanyl nitrogen, two NH₂ groups are attached to the C atom of the guanidine moiety. The C–N bond distances involving the two NH₂ groups, *viz*. C8–N4 and C8–N5, as well as the N4–C8–N5 angle (Table 1), indicate considerable π -character in the bonding. Delocalization and the intramolecular N1–H1···N2 and N5–H5A···N2 hydrogen bonds (Table 2) are responsible for the planarity of the molecule.

Experimental

1.0 mmol of aminoguanidine bicarbonate was neutralized by the dropwise addition of concentrated H_2SO_4 until the evolution of CO_2 ceased and then added to a solution of 1.0 mmol of 2-formylpyridine in ethanol, followed by 2–3 drops of H_2SO_4 to catalyze the reaction. The mixture was refluxed for 5 h and slowly evaporated at *ca* 308 K to give a yellow solid, m.p. 463–465 K. Compound (I) was prepared by dissolving 1 mmol of the aminoguanidine in approximately 50 ml of a 3:1 EtOH–HCl (12 *N*) mixture by volume, adding an equimolar amount of NiCl₂·6H₂O, and subsequent heating of the reaction mixture under reflux for 1 h. The solution was then filtered and the filtrate left until crystals formed.

Acta Cryst. (2001). E57, m137–m139DOI: 101107/S1600536801003725Jesús Valdés-Martínez et al. • (C₇H₁₁N₄)₂[Ni(H₂O)₄Cl₂]Cl₂·4H₂O **m137**

Figure 1

A view of (I) with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level.

Crystal data

$\begin{array}{l} (C_7H_{11}N_4)_2[Ni(H_2O)_4Cl_2]Cl_2\cdot 4H_2O\\ M_r = 745.95\\ Monoclinic, C2/c\\ a = 24.698 (4) Å\\ b = 7.106 (1) Å\\ c = 18.538 (2) Å\\ \beta = 99.59 (1)^\circ\\ V = 3208.0 (8) Å^3\\ Z = 4 \end{array}$	$D_x = 1.544 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 33 reflections $\theta = 2.5-12.5^{\circ}$ $\mu = 1.16 \text{ mm}^{-1}$ T = 293 (2) K Prism, yellow $0.30 \times 0.16 \times 0.10 \text{ mm}$
Data collection	
Siemens P4/PC diffractometer	$R_{int} = 0.046$
$\theta/2\theta$ scans	$\theta_{max} = 27.5^{\circ}$
Absorption correction: ψ scan	$h = -1 \rightarrow 32$
(North et al., 1968)	$k = -1 \rightarrow 9$
$T_{min} = 0.325, T_{max} = 0.367$	$l = -24 \rightarrow 23$
4547 measured reflections	3 standard reflections
3656 independent reflections	every 97 reflections
2222 reflections with $I > 2\sigma(I)$	intensity decay: 3%
Refinement on F^2	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.044$	$w = 1/[\sigma^2(F_o^2) + (0.0678P)^2]$
$wR(F^2) = 0.142$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma) = -0.007$

Table 1

3656 reflections

219 parameters

Selected geometric parameters (Å, °).

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	i1-01	1.286 (6)
Ni1-Cl1 2.3923 (9) C8-N4 1.324 N1-C6 1.334 (6) C8-N5 1.304 N1-C2 1.356 (6) N2-N3 1.360 O1-Ni1-O2 178.04 (13) N5-C8-N4 123.2 (10)	i1-O2	1.368 (5)
N1-C6 1.334 (6) C8-N5 1.304 N1-C2 1.356 (6) N2-N3 1.360 O1-Ni1-O2 178.04 (13) N5-C8-N4 123.2 (i1-Cl1	1.324 (6)
N1-C2 1.356 (6) N2-N3 1.360 O1-Ni1-O2 178.04 (13) N5-C8-N4 123.2 (1-C6	1.304 (6)
O1-Ni1-O2 178.04 (13) N5-C8-N4 123.2 (1-C2	1.360 (5)
O1-Ni1-O2 178.04 (13) N5-C8-N4 123.2 (
	1-Ni1-O2	123.2 (4)
O1-Ni1-Cl1 88.83 (9) N5-C8-N3 119.9 (1-Ni1-Cl1	119.9 (4)
O2-Ni1-Cl1 92.79 (9) N4-C8-N3 116.9 (2-Ni1-Cl1	116.9 (4)
N1-C2-C7 119.2 (4) C7-N2-N3 117.7 (1 - C2 - C7	117.7 (4)
N2-C7-C2 118.1 (4) N2-N3-C8 116.9 (2-C7-C2	116.9 (3)

 $\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$

Table 2Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1A\cdots O4^{i}$	0.84	1.99	2.775 (5)	156
$O1 - H1B \cdot \cdot \cdot Cl2$	0.84	2.30	3.132 (4)	169
$O2-H2A\cdots O4^{ii}$	0.85	1.97	2.795 (6)	163
$O2-H2B\cdots Cl2^{iii}$	0.84	2.30	3.131 (4)	169
$O3-H3A\cdots Cl1$	0.82	2.35	3.163 (4)	172
O3−H3B···Cl3 ⁱⁱ	0.85	2.42	3.180 (6)	147
$O4-H4A\cdots Cl3$	0.86	2.26	3.096 (4)	167
$O4-H4B\cdots Cl2^{iv}$	0.83	2.31	3.107 (4)	161
$N1 - H1 \cdot \cdot \cdot N2$	0.85	2.42	2.717 (5)	101
$N1 - H1 \cdot \cdot \cdot Cl3$	0.85	2.29	3.096 (4)	160
$N3-H3C\cdots Cl1^{v}$	0.82	2.48	3.231 (4)	153
$N4-H4C\cdots O2^{vi}$	0.84	2.43	3.207 (6)	155
$N4-H4C\cdotsO1^{vii}$	0.84	2.49	3.119 (5)	132
$N4 - H4D \cdot \cdot \cdot Cl2^{v}$	0.84	2.35	3.187 (4)	168
$N5-H5A\cdots N2$	0.86	2.37	2.634 (5)	98
$N5-H5A\cdots Cl3$	0.86	2.39	3.225 (4)	162
$N5-H5B\cdots O3^{vi}$	0.84	1.98	2.778 (6)	157

Symmetry codes: (i) -x, -y, 1-z; (ii) $x, 1-y, \frac{1}{2}+z$; (iii) $-x, 1+y, \frac{3}{2}-z$; (iv) $x, -y, z - \frac{1}{2}$; (v) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z$; (vi) $\frac{1}{2}-x, \frac{1}{2}-y, 1-z$; (vii) $\frac{1}{2}+x, \frac{1}{2}-y, z - \frac{1}{2}$.

H-atom positions were located in difference Fourier maps and a riding model with fixed displacement parameters $[U_{ij} = 1.2U_{ij}(eq) \text{ of the atom to which they are bonded}]$ was used for subsequent refinements. H atoms attached to N and O atoms were refined with fixed bond lengths r(D-H) = 0.85 Å.

Data collection: *P4 Software* (Siemens, 1995); cell refinement: *P4 Software*; data reduction: *P4 Software*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997).

The authors thank the Donors of the Petroleum Research Fund, administered by the American Chemical Society, the National Science Foundation and the UNAM for partial support of this research.

References

- Alstrum-Acevedo, J. H., Valdés-Martínez, J., Toscano, R. A., Hernandez-Ortega, S., Espinosa-Pérez, G., Helfrich, B. A. & West, D. X. (2001). *Polyhedron.* Submitted.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 350–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1995). P4 Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.